# 文件: tractor_vision/alg/track_detection.py import cv2 import numpy as np import math from collections import deque # ——— 相机标定参数 ——— FX = 474.0 # X轴焦距 FY = 505.0 # Y轴焦距 CX = 320.0 # CX 中心x轴中标 CY = 240.0 # CY 中心y轴座标 CAMERA_TILT_DEG = 10.0 # 向下为正 # ——— ROI & 阈值 ——— ROI = (190, 40, 250, 420) MIN_DEPTH = 1100 ANGLE_TOL_DEG = 45 def preprocess_depth(depth, blur_ksize=5, kernel_size=7): """ - 中值滤波消噪 - 形态学闭运算填补空洞 """ d = cv2.medianBlur(depth, blur_ksize) kernel = np.ones((kernel_size, kernel_size), np.uint8) closed = cv2.morphologyEx(d, cv2.MORPH_CLOSE, kernel) d[d == 0] = closed[d == 0] return d def offset_after_rotation(line): (x1, y1), (x2, y2) = line phi = math.degrees(math.atan2(y2 - y1, x2 - x1)) rot = math.radians(90.0 - phi) mx, my = (x1 + x2) / 2, (y1 + y2) / 2 dx, dy = mx - CX, my - CY x_rot = dx * math.cos(rot) - dy * math.sin(rot) return -x_rot, (int(mx), int(my)) def compute_metrics(depth): # NOTE: 先强行对数据进行转换,保持数据为uint16的副本 depth_mm = ( depth.copy().astype(np.uint16) if depth.dtype != np.uint16 else depth.copy() ) # NOTE: 中值滤波消噪 den = preprocess_depth(depth_mm) # NOTE: 裁剪出感兴趣的ROI区域进行分析 x, y, w, h = ROI crop = den[y : y + h, x : x + w] if not (crop >= MIN_DEPTH).any(): return None, None, None, None, depth_mm, ROI, None # NOTE: 将深度裁剪区域 crop 归一化到0~255区间,并转换为 uint8 类型,方便后续边缘检测。 # 归一化是为了适配 OpenCV 的边缘检测算法对8位图像的需求。 norm = cv2.normalize(crop, None, 0, 255, cv2.NORM_MINMAX).astype("uint8") # NOTE: 对归一化后的图像执行 Canny 边缘检测,提取边缘轮廓。 # 50和150是边缘检测的低高阈值。 edges = cv2.Canny(norm, 50, 150) lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 30, minLineLength=50, maxLineGap=10) # NOTE: 如果没检测边缘直线,则返回空 if lines is None: return None, None, None, None, depth_mm, ROI, None # NOTE: 将摄像机俯仰角(单位度)转为弧度,后续角度计算时用。 tilt = math.radians(CAMERA_TILT_DEG) # NOTE:初始化空列表,存放符合角度条件的候选轨道线。 cands = [] # NOTE: 遍历霍夫检测到的所有直线,每条线由两个端点坐标 (x1_, y1_) 和 (x2_, y2_) 表示。 for x1_, y1_, x2_, y2_ in lines.reshape(-1, 4): # NOTE:将裁剪区域的坐标偏移加回,转换为深度图整体坐标系的位置。 # 因为霍夫检测是在裁剪区域内,需补偿ROI偏移。 p1 = (x1_ + x, y1_ + y) p2 = (x2_ + x, y2_ + y) # NOTE: 计算线段水平和垂直方向的向量分量 dx, dy = p2[0] - p1[0], p2[1] - p1[1] # NOTE: 计算线段与垂直方向的角度(弧度) raw = -math.atan2(dx, -dy) # NOTE: 考虑摄像头俯仰角 tilt,修正线段的角度。把线段角度投影到水平面,得到真实的轨道角度。 grd = math.asin(math.sin(raw) * math.cos(tilt)) # NOTE: 角度转换成度数,并取绝对值。 ang = abs(math.degrees(grd)) # NOTE: 如果角度小于预设阈值 ANGLE_TOL_DEG(即近似垂直轨道的线),认为是候选轨道线,添加到列表。 if ang <= ANGLE_TOL_DEG: cands.append({"line": (p1, p2), "mid_x": (p1[0] + p2[0]) / 2}) # NOTE: 如果没找到符合角度的候选线,返回 None。 if not cands: return None, None, None, None, depth_mm, ROI, None # NOTE: 选择最左边的轨道线作为“最佳”轨道线,依据中点横坐标最小。 best = min(cands, key=lambda c: c["mid_x"]) # NOTE: 拆包出最佳轨道线的两个端点坐标。 line = best["line"] (x1, y1), (x2, y2) = line # 交点 dxl, dyl = x2 - x1, y2 - y1 # NOTE: 计算轨道线与摄像头中心线(垂直线 x=CX)交点坐标。 # 如果轨道线不是垂直的,则通过线性插值求出交点 y 坐标。 # 如果轨道线垂直(dxl=0),交点为中点 y 坐标。 if dxl != 0: t = (CX - x1) / dxl y_int = y1 + t * dyl inter = (int(CX), int(y_int)) else: inter = (int(CX), int((y1 + y2) / 2)) # NOTE: 通过各种公式计算出角度和偏移亮 p_up = (x1, y1) if y1 < y2 else (x2, y2) vx, vy = p_up[0] - inter[0], p_up[1] - inter[1] raw2 = math.atan2(vx, -vy) grd2 = math.asin(math.sin(raw2) * math.cos(tilt)) signed = math.degrees(grd2) off_px, midpt = offset_after_rotation(line) pts = [ np.clip(pt, [0, 0], [depth_mm.shape[1] - 1, depth_mm.shape[0] - 1]) for pt in line ] Zs = [float(depth_mm[pt[1], pt[0]]) for pt in pts] Zavg = np.mean([z for z in Zs if z > 0]) if any(z > 0 for z in Zs) else MIN_DEPTH off_mm = off_px * Zavg / FX * math.cos(tilt) return signed, off_mm, line, midpt, depth_mm, ROI, inter class TrackDetector: def __init__(self, camera_list, alpha=0.6, win_raw=5, win_smooth=5, interval=0.2): self.alpha, self.interval = alpha, interval self.ang_raw = {sn: deque(maxlen=win_raw) for sn in camera_list} self.off_raw = {sn: deque(maxlen=win_raw) for sn in camera_list} self.ang_smooth = {sn: deque(maxlen=win_smooth) for sn in camera_list} self.off_smooth = {sn: deque(maxlen=win_smooth) for sn in camera_list} self.last_ang = {sn: None for sn in camera_list} self.last_off = {sn: None for sn in camera_list} self.last_t = {sn: 0.0 for sn in camera_list} def process(self, depth, sn): # TODO: 先进行对当前时钟判断,如果小于interval则返回空 now = cv2.getTickCount() / cv2.getTickFrequency() if now - self.last_t[sn] < self.interval: return None self.last_t[sn] = now res = compute_metrics(depth) if res[0] is None: return None ang, off, line, midpt, _, _, inter = res # TODO: 平滑 self.ang_raw[sn].append(ang) self.off_raw[sn].append(off) med_ang = float(np.median(self.ang_raw[sn])) med_off = float(np.median(self.off_raw[sn])) pa, po = self.last_ang[sn], self.last_off[sn] ang_exp = ( med_ang if pa is None else self.alpha * med_ang + (1 - self.alpha) * pa ) off_exp = ( med_off if po is None else self.alpha * med_off + (1 - self.alpha) * po ) self.last_ang[sn], self.last_off[sn] = ang_exp, off_exp self.ang_smooth[sn].append(ang_exp) self.off_smooth[sn].append(off_exp) disp_ang = float(np.median(self.ang_smooth[sn])) disp_off = float(np.median(self.off_smooth[sn])) return { "angle": -disp_ang, # 左正右负 "offset": disp_off, "line": line, "midpoint": midpt, "intersection": inter, }